Proof of universality of electrical conductivity at finite chemical potential
نویسندگان
چکیده
منابع مشابه
Deconfinement at finite chemical potential
In a confining, renormalisable, Dyson-Schwinger equation model of two-flavour QCD we explore the chemical-potential dependence of the dressed-quark propagator, which provides a means of determining the behaviour of the chiral and deconfinement order parameters, and low-energy pion observables. We find coincident, first order deconfinement and chiral symmetry restoration transitions at μc = 375M...
متن کاملElectrical conductivity of CuO nanofluids
An empirical electrical conductivity assessment of nanofluids comprising CuO nanoparticles water-based in different concentrations, particles size and various temperatures of nanofluids has been carried out in this paper. These experimentations have been done in deionized water with nanoparticles sizes such as 89, 95, 100 and 112 nm and concentrations of 0.12 g/l, 0.14 g/l, 0.16 g/l and 0.18 g/...
متن کاملElectrical conductivity of CuO nanofluids
An empirical electrical conductivity assessment of nanofluids comprising CuO nanoparticles water-based in different concentrations, particles size and various temperatures of nanofluids has been carried out in this paper. These experimentations have been done in deionized water with nanoparticles sizes such as 89, 95, 100 and 112 nm and concentrations of 0.12 g/l, 0.14 g/l, 0.16 g/l and 0.18 g/...
متن کاملStochastic quantization at finite chemical potential
A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We present results for U(1) and SU(3) one link models and QCD at finite chemical potential using the hopping expansion. The phase of the determinant is st...
متن کاملElectrical Conductivity of Lithium at Mbar Pressures
We report measurements of the electrical conductivity of a liquid alkali metal lithium at pressures up to 1.8 Mbar and 4-fold compression, achieved through shock compression experiments. We find that the results are consistent with a departure of the electronic properties of lithium from the nearly free electron approximation at high pressures, and with ionic pairing correlations in the Mbar re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2011
ISSN: 1029-8479
DOI: 10.1007/jhep02(2011)073